What Is A Google Dance?

(编辑:jimmy 日期: 2024/12/24 浏览:2)

What Is A Google Dance? The name "Google Dance" is often used to describe the index update of the Google search engine. Google's index update occurs on average once per month. It can be identified by significant movement in search results and especially by Google's cache of all indexed pages reflecting the status of Google's last spidering. But the update does not proceed as a switch from one index to another at one point in time. In fact, it takes several days to complete the index update. During this period, the old and the new index alternate on www.google.com. At an early stage, the results from the new index occur sporadically. But later on, they appear more frequently. Google dances. Technical Background on Google The Google search engine pulls its results from more than 10,000 servers which are simple Linux PCs that are used by Google for reasons of cost. Naturally, an index update cannot be proceeded on all those servers at the same time. One server after the other has to be updated with the new index. Many webmasters think that, during the Google Dance, Google is in some way able to control if a server with the new index or a server with an old index responds to a search query. But, since Google's index is inverse, this would be very complicated. As we will show below, there is no such control within the system. In fact, the reason for the Google Dance is Google's way of using the Domain Name System (DNS). Google Dance and DNS Not only Google's index is spread over more than 10,000 servers, but also these servers are, as of now, placed in eight different data centers. These data centers are mainly located in the US (i.e. Santa Clara, California and Herndon, Virginia), indeed, in June 2002 Google's first European data center in Zurich, Switzerland went online. Very likely, there are more data centers to come, which will perhaps be spread over the whole world. However, in January and April 2003 Google has put two data centers on stream which are again located in the US. In order to direct traffic to all these data centers, Google could thoeretically record all queries centrally and then send them to the data centers. But this would obviously be inefficient. In fact, each data center has its own IP address (numerical address on the internet) and the way these IP addresses are accessed is managed by the Domain Name System. Basically, the DNS works like this: On the Internet, data transfers always take place in-between IP addresses. The information about which domain resolves to which IP address is provided by the name servers of the DNS. When a user enters a domain into his browser, a locally configured name server gets him the IP address for that domain by contacting the name server which is responsible for that domain. (The DNS is structured hierarchically. Illustrating the whole process would go beyond the scope of this paper.) The IP address is then cached by the name server, so that it is not necessary to contact the responsible name server each time a connection is built up to a domain. The records for a domain at the responsible name server constitute for how long the record may be cached by a caching name server. This is the Time To Live (TTL) of a domain. As soon as the TTL expires, the caching name server has to fetch the record for a domain again from the responsible name server. Quite often, the TTL is set to one or more days. In contrast, the Time To Live of the domain www.google.com is only five minutes. So, a name server may only cache Google's IP address for five minutes and has then to look up the IP address again. Each time, Google's name server is contacted, it sends back the IP address of only one data center. In this way, Google queries are always directed to different data centers by changing DNS records. On the one hand, the DNS records may be based on the load of the single data centers. In this way, Google would conduct a simple form of load balancing by its use of t

一句话新闻

一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?