python判断、获取一张图片主色调的2个实例

(编辑:jimmy 日期: 2025/12/25 浏览:2)

python判断图片主色调,单个颜色:
复制代码 代码如下:
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import colorsys
from PIL import Image
import optparse

def get_dominant_color(image):
"""
Find a PIL image's dominant color, returning an (r, g, b) tuple.
"""

image = image.convert('RGBA')

# Shrink the image, so we don't spend too long analysing color
# frequencies. We're not interpolating so should be quick.
image.thumbnail((200, 200))

max_score = None
dominant_color = None

for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):
# Skip 100% transparent pixels
if a == 0:
continue

# Get color saturation, 0-1
saturation = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)[1]

# Calculate luminance - integer YUV conversion from
# http://en.wikipedia.org/wiki/YUV
y = min(abs(r * 2104 + g * 4130 + b * 802 + 4096 + 131072) 13, 235)

# Rescale luminance from 16-235 to 0-1
y = (y - 16.0) / (235 - 16)

# Ignore the brightest colors
if y > 0.9:
continue

# Calculate the score, preferring highly saturated colors.
# Add 0.1 to the saturation so we don't completely ignore grayscale
# colors by multiplying the count by zero, but still give them a low
# weight.
score = (saturation + 0.1) * count

if score > max_score:
max_score = score
dominant_color = (r, g, b)

return dominant_color

def main():
img = Image.open("meitu.jpg")
print '#%02x%02x%02x' % get_dominant_color(img)

if __name__ == '__main__':
main()

python判断一张图片的主色调,多个颜色:
复制代码 代码如下:
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import colorsys
from PIL import Image
import optparse

def get_dominant_color(image):
"""
Find a PIL image's dominant color, returning an (r, g, b) tuple.
"""

image = image.convert('RGBA')

# Shrink the image, so we don't spend too long analysing color
# frequencies. We're not interpolating so should be quick.
## image.thumbnail((200, 200))

max_score = 1
dominant_color = []

for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):
# Skip 100% transparent pixels
if a == 0:
continue

# Get color saturation, 0-1
saturation = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)[1]

# Calculate luminance - integer YUV conversion from
# http://en.wikipedia.org/wiki/YUV
y = min(abs(r * 2104 + g * 4130 + b * 802 + 4096 + 131072) 13, 235)

# Rescale luminance from 16-235 to 0-1
y = (y - 16.0) / (235 - 16)

# Ignore the brightest colors
if y > 0.9:
continue

# Calculate the score, preferring highly saturated colors.
# Add 0.1 to the saturation so we don't completely ignore grayscale
# colors by multiplying the count by zero, but still give them a low
# weight.
score = (saturation + 0.1) * count
if score > max_score:
max_score = score
dominant_color.append((r, g, b))

return dominant_color

def main():
img = Image.open("meitu.jpg")
colors = get_dominant_color(img)
for item in colors:
print '#%02x%02x%02x' % item

if __name__ == '__main__':
main()

 

一句话新闻

高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。